Ultrahigh-field cardiovascular magnetic resonance T1 and T2 mapping for the assessment of anthracycline-induced cardiotoxicity in rat models: validation against histopathologic changes
작성자 관리자
작성일 21-03-01 15:33
조회수 221
Abstract
Background
Chemotherapy-induced cardiotoxicity is a well-recognized adverse effect of chemotherapy. Quantitative T1-mapping cardiovascular magnetic resonance (CMR) is useful for detecting subclinical myocardial changes in anthracycline-induced cardiotoxicity. The aim of the present study was to histopathologically validate the T1 and T2 mapping parameters for the evaluation of diffuse myocardial changes in rat models of cardiotoxicity.
Methods
Rat models of cardiotoxicity were generated by injecting rats with doxorubicin (1 mg/kg, twice a week). CMR was performed with a 9.4 T ultrahigh-field scanner using cine, pre-T1, post-T1 and T2 mapping sequences to evaluate the left ventricular ejection fraction (LVEF), native T1, T2, and extracellular volume fraction (ECV). Histopathological examinations were performed and the association of histopathological changes with CMR parameters was assessed.
Results
Five control rats and 36 doxorubicin-treated rats were included and classified into treatment periods. In the doxorubicin-treated rats, the LVEF significantly decreased after 12 weeks of treatment (control vs. 12-week treated: 73 ± 4% vs. 59 ± 9%, P = 0.01). Increased native T1 and ECV were observed after 6 weeks of treatment (control vs. 6-week treated: 1148 ± 58 ms, 14.3 ± 1% vs. 1320 ± 56 ms, 20.3 ± 3%; P = 0.005, < 0.05, respectively). T2 values also increased by six weeks of treatment (control vs. 6-week treated: 16.3 ± 2 ms vs. 10.3 ± 1 ms, P < 0.05). The main histopathological features were myocardial injury, interstitial fibrosis, inflammation, and edema. The mean vacuolar change (%), fibrosis (%), and inflammation score were significantly higher in 6-week treated rats than in the controls (P = 0.03, 0.03, 0.02, respectively). In the univariable analysis, vacuolar change showed the highest correlation with native T1 value (R = 0.60, P < 0.001), and fibrosis showed the highest correlation with ECV value (R = 0.78, P < 0.001). In the multiple linear regression analysis model, vacuolar change was a significant factor for change in native T1 (P = 0.01), and vacuolar change and fibrosis were significant factors for change in ECV (P = 0.006, P < 0.001, respectively) by adding other histopathological parameters (i.e., inflammation and edema scores)
Conclusions
Quantitative T1 and T2 mapping CMR is a useful non-invasive tool reflecting subclinical histopathological changes in anthracycline-induced cardiotoxicity.
Journal: Journal of Cardiovascular Magnetic Resonance
Author
Heae Surng Park, Yoo Jin Hong, Kyunghwa Han, Pan Ki Kim, Eunkyung An, Ji Yeon Lee, Chul Hwan Park, Hye-Jeong Lee, Jin Hur, Young Jin Kim, and Byoung Wook Choi
DOI: doi.org/10.1186/s12968-021-00767-8
-
이전글
[Angiomics] Prognostic Value of Coronary Artery Disease-Reporting and Data System Score for Major Adverse Cardiac Events in Patients Attending the Emergency Department With Acute Chest Pain -
다음글
Regional Amyloid Burden Differences Evaluated Using Quantitative Cardiac MRI in Patients with Cardiac Amyloidosis